
Superword-Level Parallelism in the Presence of Control Flow

Jaewook Shin, Mary Hall and Jacqueline Chame

Information Sciences Institute
University of Southern California
4676 Admiralty Way, Suite 1001
Marina del Rey, California 90292

{jaewook,mhall,jchame }@isi.edu

Abstract

In this paper, we describe how to extend the concept
of superword-level parallelization (SLP), used for multime-
dia extension architectures, so that it can be applied in the
presence of control flow constructs. Superword-level paral-
lelization involves identifying scalar instructions in a large
basic block that perform the same operation, and, if depen-
dences do not prevent it, combining them into a superword
operation on a multi-word object. A key insight is that we
can use techniques related to optimizations for architectures
supporting predicated execution, even for multimedia ISAs
that do not provide hardware predication. We derive large
basic blocks with predicated instructions to which SLP can
be applied. We describe how to minimize overheads for su-
perword predicates and re-introduce control flow for scalar
operations. We discuss other extensions to SLP to address
common features of real multimedia codes. We present
automatically-generated performance results on 8 multime-
dia codes to demonstrate the power of this approach. We
observe speedups ranging from 1.97X to 15.07X as com-
pared to both sequential execution and SLP alone.

1 Introduction

Many modern microprocessors incorporate an expanded
instruction set specifically targeting the requirements of
multimedia applications, with a functional unit that can op-
erate on aggregate objects to perform bit-level operations,
or SIMD parallel operations on variable-sized fields in the
object (e.g.,8, 16, 32 or 64-bit fields). If the aggregate ob-
jects are larger than the size of a machine word, then they
are calledsuperwords[16].

Initially, the conventional wisdom was that the appropri-
ate compiler technology for multimedia extensions would

borrow heavily from automatic vectorization [25, 5, 7].
More recently, Larsen and Amarasinghe demonstrated that
unique features of the architectures and the target multi-
media applications suggest that a different strategy, called
superword-level parallelization(SLP), can often yield more
effective optimization [16]. Architecturally, multimedia ex-
tensions supportsimultaneousSIMD execution onshort
“vectors” (128 bits on a PowerPC AltiVec), rather than
pipelinedSIMD execution oflong vectorson vector archi-
tectures. As a consequence, in a multimedia extension ar-
chitecture, initiating a parallel computation has fairly low
overhead, and can be mixed with sequential instructions in
an efficient manner. On the other hand, the benefits over se-
quential execution are not as great on a short “vector”, and
whatever overheads exist must be carefully managed.

As compared to vectorization, rather than relying on
high-level loop transformations, SLP involves packingiso-
morphic instructions and their associated data into super-
words, possibly performing loop unrolling to expose par-
allelism. While this approach is simple and effective, it
only identifies parallelism within a basic block. The follow-
ing simple and inherently parallel loop would not be paral-
lelized:

for (i=0; i<16; i++)
if (a[i] != 0)

b[i]++;

Superword-level parallelization in the presence of control
flow is still an open issue: how to identify parallelism in
the presence of control flow, how to best use multimedia
ISA features, and how to avoid overheads that lead to per-
formance degradations as compared to scalar code. Support
for parallelizing control flow is important to multimedia ap-
plications. As one data point, control flow appears in key
computations in 6 of the 11 codes in the UCLA Media-
Bench [18], comprising on average over40% of their ex-
ecution time.

1

if
conversion

remove superword
predicates
(select)

parallelize
remove scalar
predicates

(unpredicate)

original
C code

output
C code

unroll
alignment
analysis

superword
replacement

Superword
Level Locality

Figure 1. An SLP-based compiler that supports control flow.

We are developing a compiler extending MIT’s SLP
compiler for both the PowerPC AltiVec and a research
architecture called DIVA that uses processing-in-memory
technology to exploit the high memory bandwidth when
processing logic is combined with large amounts of mem-
ory [12, 8]. In this paper, we examine the impact of incor-
porating parallelization of control flow for multimedia ar-
chitectures. We describe our compiler implementation that
attains significant performance improvements over SLP and
sequential execution in the presence of control flow, rang-
ing from 1.97X to 15.07X for 8 multimedia codes. A key
insight in this work is that we can borrow heavily from
optimizations developed for architectures supporting wide-
issue instruction-level parallelism and predicated execution,
such as, for example, the Itanium family of processors [14],
even for architectures such as the AltiVec that do not sup-
port predication. There are two reasons why similar op-
timization techniques can be used for these two distinct
classes of architectures:

• SLP and ILP optimizations operate within basic
blocks. Control flow limits the size of basic blocks,
and thus limits optimization opportunities. We de-
rive large basic blocks with predicated instructions to
which SLP can be applied.

• A commonality in multimedia extension ISAs is what
we will call a select operation for merging the re-
sults of different control flow paths. Based on the
value of a boolean superword, individual fields from
two different inputs are combined and committed to a
final result. Thus,select instructions appear similar
to predicated instructions, even though the underlying
hardware mechanisms to implement the two are very
different.

The remainder of the paper is organized as follows. Sec-
tion 2 presents an overview of the compiler techniques re-
quired for SLP optimizations in the presence of control flow.
Section 3 presents the two main new algorithms, based on
related algorithms supporting ILP and predicated execution.
Section 4 describes relevant parallelization and code gener-
ation issues. Section 5 presents results of the implementa-
tion on 8 multimedia codes, yielding speedups ranging from

1.97X to 15.07X over sequential execution. Section 6 de-
scribes related work, followed by a conclusion.

2 Motivation

In Figure 1, we present the collection of analyses and
transformations to exploit SLP in the presence of con-
trol flow. Analyses from the standard SLP compiler are
described in [16, 17]. We also perform the compiler-
controlled caching of [23] in two distinct phases. Super-
word level locality analysis identifies the potential for su-
perword register reuse and guides loop unrolling and unroll-
and-jam. In a later phase, superword replacement exploits
the exposed reuse by removing redundant memory accesses.

The analyses within the dashed box represent control-
flow extensions beyond what is required for SLP restricted
to a basic block. Figure 2 illustrates the goals of these
analyses and transformations using the C code snippet from
Chroma Key in Figure 2(a).

As shown in 2(b), the code is unrolled by a factor of four,
based on the assumption that the superword register width is
sixteen bytes and the array type sizes are four bytes. Next,
if-conversionusing Park and Schlansker’s algorithm [22]
is applied to convert control dependences into data depen-
dences. Now, associated with each instruction is apredi-
cate, shown in parenthesis at the end of the instruction, that
captures the conditions that must be true for the instruction
to execute. Thepset instruction initializes the value of the
predicatespT andpF based on the value of the condition
represented bycomp.

After if-conversion, the loop body becomes one basic
block of predicated instructions. A modified version of
the SLP parallelizer, which packs together isomorphic in-
structions with their predicates, derives a mix of predicated
scalar and superword instructions. The resulting code is
shown in Figure 2(c). In Figure 2(d), we show how a su-
perwordselect operation can be used to select individ-
ual fields from two superword definitions according to the
value of a superword predicate variable. Concretely, the ef-
fect of theselect operation “dst = select(src1,
src2, mask) ”, is to assignsrc2 to dst for the fields
where the correspondingmask bit is 1. Otherwise,src1

2

for (i=0; i<1024; i++){
if (fore blue[i] != 255){

back blue[i] = fore blue[i];
back red[i+1] = backred[i];

}
}

(a) Original

for (i=0; i<1024; i+=4){
comp = foreblue[i] != 255;
pT, pF = pset(comp);
back blue[i] = fore blue[i]; (pT)
back red[i+1] = backred[i]; (pT)
· · ·

}
(b) Unrolled and if-converted

for (i=0; i<1024; i+=4){
v comp = foreblue[i:i+3] != (255,255,255,255);
v pT, v pF = v pset(vcomp);
back blue[i:i+3] = fore blue[i:i+3]; (v pT)
pT1, pT2, pT3, pT4 = unpack(vpT);
back red[i+1] = backred[i]; (pT1)
back red[i+2] = backred[i+1]; (pT2)
back red[i+3] = backred[i+2]; (pT3)
back red[i+4] = backred[i+3]; (pT4)

}
(c) Parallelized

for (i=0; i<1024; i+=4){
v comp = foreblue[i:i+3] != (255,255,255,255);
v pT, v pF = v pset(vcomp);
back blue[i:i+3] = select(backblue[i:i+3], fore blue[i:i+3], v pT)
pT1, pT2, pT3, pT4 = unpack(vpT);
back red[i+1] = backred[i]; (pT1)
back red[i+2] = backred[i+1]; (pT2)
back red[i+3] = backred[i+2]; (pT3)
back red[i+4] = backred[i+3]; (pT4)

}
(d) Select applied

for (i=0; i<1024; i+=4){
v comp = foreblue[i:i+3] != (255,255,255,255);
v pT, v pF = v pset(vcomp);
back blue[i:i+3] = select(backblue[i:i+3], fore blue[i:i+3], v pT)
pT1, pT2, pT3, pT4 = unpack(vpT);
if (pT1) backred[i+1] = backred[i];
if (pT2) backred[i+2] = backred[i+1];
if (pT3) backred[i+3] = backred[i+2];
if (pT4) backred[i+4] = backred[i+3];

}
(e) Unpredicated

Figure 2. Example illustrating steps of SLP compilation in the presence of control flow.

is assigned todst . Figure 3 shows this graphically us-
ing superwords of 4 scalar elements. Note that the effect
of this transformation is to execute both control flow paths
and select the value from the one that would have executed
in the scalar version of the code. Thus, the parallelization
overhead includes theselect instructions, and the cost
of executing both paths. In Section 3.2, we describe how
to minimize the number ofselect instructions to reduce
this overhead.

 = SELECT(, ,);1 10 02 22 2 3 33 33 32 2

Figure 3. Merging two superwords using a SE-
LECT instruction

Next, we restore the control flow for the predicated scalar
operations, as shown in Figure 2(e). While it is straightfor-
ward to insert control flow corresponding to the predicate
on the instruction, this strategy could result in an enormous
amount of additional branches as compared to the original
scalar code. Thus, another important optimization is min-
imizing the branches, with an attempt to recover as close
as possible the control flow of the original scalar code, as
described in Section 3.3.

Discussion. The approach described above has been
heavily influenced by features of the ISA of the target ar-
chitectures, as well as the current organization of the SLP
compiler, where we treat the SLP pass as a black box and
feed it large basic blocks for parallelization. If the target ar-
chitecture supportedmaskedsuperword operations [24] and
predicated scalar execution [22, 13], the code in Figure 2(c)
would not need any further transformations for SLP. The
DIVA ISA supports masked superword operations, but not
predicated execution, and the PowerPC AltiVec, the other
platform for our work, supports neither. Thus the com-
piler must eliminate the predicates on scalar instructions by
restoring control flow, and for architectures including the
AltiVec, replace the predicated superword instructions with
select instructions that achieve the same effect.

If the architecture combined SLP support and predi-
cation, we could adapt recently-developed algorithms by
Chuang et. al. to generatephi-instructionsfrom the CFG
of a scalar code to resolve themultiple-definition problem
in architectures that support predicated execution [6]. Their
phi-instruction is a scalar analog to the superwordselectin-
struction. While it is possible to use the phi-predicated code
as an input to SLP, some scalar predicated operations would
remain and scalar control flow would nevertheless need to
be restored in architectures such as the AltiVec.

3

(a) scalar

Vp, Vnp = Vb < V0
Va = V1 (Vp)
Va = V0 (Vnp)
... = Va

(b) parallelized
 intermediate form

Vp, Vnp = Vb < V0
Va1 = V1
Va = select(Va, Va1, Vp)
Va2 = V0
Va = select(Va, Va2, Vnp)
... = Va

(c) naive generation of select

if (b[i]<0){
 a[i] = 1;
}else{
 a[i] = 0;
}
.. = a[i];

Figure 4. Merging two superword definitions

3 Algorithm

In this section, we present the two analyses and code
transformation techniques outlined above. Following if-
conversion, the resulting code contains large basic blocks of
instructions, and in some cases, the instructions are predi-
cated. The compiler’s job is to remove these predicates. We
discuss how superword predicates are removed by insert-
ing select operations in Section 3.2. We describe how
scalar predicates are removed through an algorithm we call
unpredicatein Section 3.3. Prior to these descriptions, we
introduce a few definitions in Section 3.1.

3.1 Definitions

Since SLP relies on if-conversion, there is a lot of simi-
larity between the techniques described in this paper, and
those used to compile for architectures supporting predi-
cated execution. Thus, we borrow several concepts from
Mahlke’s work, defined as follows [20].

Definition 1 A predicate hierarchy graph(PHG) is a di-
rected acyclic graph representing nesting relations among
predicates in a predicated basic block (after if-conversion
has been applied).

A PHG consists of two types of nodes,predicate nodes
andcondition nodes, and is constructed as follows. Start-
ing with a single predicate node, each instruction is exam-
ined in textual order. For each instruction that defines pred-
icates, such as, for examplepT, pF = pset(comp)
(pParent); above, at most two condition nodes are cre-
ated, representing the true and false values of a comparison.
For this example, condition nodescomp and¬comp would
be created. Edges are inserted from the predicate node for
the predicate guarding the instruction to the condition nodes
just created; for the example, edges from predicate node
pParent to condition nodescomp and¬comp are added.
Predicate nodes representingpT andpF are also created, if
they do not already exist. They may have been introduced

into the PHG by a prior definition, in cases where multiple
control flow paths merge. Then, edges are inserted from the
condition nodes to the corresponding predicate nodes; in
the example, there would be an edge inserted from condi-
tion nodecomp to predicate nodepT, and from¬comp to
pF. This process is repeated for each instruction that defines
a predicate. The resulting PHG permits analysis to reason
about the relationship among predicates.

Definition 2 Two predicatesp1 andp2 are mutually exclu-
sive if they are never simultaneously true, i.e.,p1 ∧ p2 =
false.

To find if two given predicatesp1 andp2 are mutually ex-
clusive, the PHG is traversed backward along all paths from
p1 andp2. Then, a set ofmerge nodesis obtained by picking
the node where two backward traversals first meet.p1 and
p2 are mutually exclusive if two backward traversals from
p1 andp2 merge from complementary edges at all merge
nodes.

Definition 3 A predicatep is said to becoveredby a set of
predicatesG if p = true ⇒ ∃p′ ∈ G such thatp′ = true.

For a given instructionI associated with a predicatep, its
predicate-covering predecessor instructions are obtained by
scanning backward the given instruction sequence. An in-
structionI ′ associated with a predicatep′ is a predicate-
covering predecessor ofI if p andp′ are not mutually ex-
clusive andp′ is not already marked as covered in the PHG.
After placingI ′ into a predicate-covering predecessor set
of I, p′ is marked ascoveredin the PHG and the newly
covered predicate is propagated in the PHG to mark other
covered predicates.

Definition 4 A definition d guarded by a predicatep
reachesa later useu guarded by a predicatep′ in the same
basic block ifp andp′ are not mutually exclusive andp′ is
not covered by any subset of predicates guarding instruc-
tions betweend andu.

In other words,d reachesu if d is a predicate-covering pre-
decessor ofu.

4

3.2 Eliminating superword predicates

In this section, we show how to remove superword predi-
cates while preserving the semantics of the original program
through the use ofselectoperations. Figure 4(a) shows
an example sequential code. After if-conversion and paral-
lelization, the control flow is removed and some instructions
are guarded by superword predicates shown in parentheses
as in Figure 4(b). The first instruction defines a superword
predicateVp and its complementVnp. A field of Vp is set to
true if the result of the comparison is true, and the fields of
Vnp are set to the complement of the corresponding fields
of Vp. To generate the final code, it is incorrect to sim-
ply remove the superword predicates; for example, the first
definition of Va would be killed by the second definition.
Instead, we rename the second definition and use aselect
instruction to merge their values into one superword vari-
able as shown in Figure 4(c).

Algorithm SEL : Given a sequence of predicated instructions IN, remove
superword predicates from all superword instructions by generatingselect
instructions.

Build a predicate hierarchy graph(PHG)
DU-chain and UD-chain are built based on Definition 4 using IN and PHG
for each definitiond : V = s1 ops2 (P)

NeedSelect← false
for each useu ∈ DU-chain(d)

if (∃ definitiond1 ∈ UD-chain(u) such thatd1 precedesd in basic block)
NeedSelect← true
remove the predicate ofd1

if (NeedSelect == true)
renameV to r in d so thatd : r = s1 ops2

remove the predicateP of d
Insert “dnew : V = select(V , r, P)” afterd
Replaced andd1 with dnew in UD-chain and DU-chain.

Figure 5. An algorithm to generate select in-
structions

Figure 5 presents the algorithm that generates the mini-
mum number of select instructions required to preserve the
original program’s behavior. A select instruction is required
for some but not all definitions of superword variables, as
will be discussed below.

Given a parallelized code with instructions guarded by
predicates, we first build a predicate hierarchy graph (PHG)
as defined in Section 3.1 [20]. At this stage, instructions
guarded by both scalar predicates and superword predicates
can be intermixed. For clarity, the reader can assume that
the PHG discussed in this section contains only superword
predicates. Our implementation actually has separate PHGs
for superword and scalar predicates, with connections be-
tween the two graphs.

The algorithm relies on both the PHG and use-definition
(UD) chains [1], extended in Definition 4 to consider the ef-
fects of predication. Using the PHG and the notion of reach-

ing definition (Definition 4), we build DU-chains for the su-
perword definitions and UD-chains for the corresponding
uses as shown in AlgorithmSEL of Figure 5. Although
the PHG involves both scalar and superword predicate vari-
ables, only superword variables are included in the DU-
chains and UD-chains. To correctly handleupward exposed
uses, all variables are assumed to be defined on entry of the
basic block, and these definitions are included when appro-
priate in the DU-chains and UD-chains. In this way, the
compiler can generate a select instruction when there is an
upward exposed use.

The main loop of the algorithmSEL examines each in-
struction in textual order. An instruction with definitiond
needs a select instruction ifd reaches at least one useu that
is also reached by an earlier definitiond1. If a definitiond
is the only definition reaching all its reachable uses, it needs
not be combined with anything. Figure 4(c) illustrates this
point. The first select instruction is not necessary.

Excluding store instructions, this algorithm generates the
minimal number of select instructions. Givenn definitions
to be combined, this algorithm generatesn − 1 select in-
structions. The minimality can be proven by reducing the
definitions to leaf nodes of a full binary tree.

3.3 Unpredicate

After superword predicates are removed and replaced
with select instructions, the code may still contain pred-
icated scalar operations. The simplest way of removing
scalar predicates is to convert each predicated instruction
into anif -statement containing one statement, as in the ex-
ample code in Figure 6(b). While correct, the code contains
numerous redundant conditional branches, six in this case.

Figure 7 presents our algorithm that generates the con-
trol flow graph(CFG) representing the improved code as
shown in Figure 6(c), given input instruction sequence IN.
The main algorithm, called UNP, is shown in Figure 7(a).
In addition to deriving the final control flow graph, UNP
derives as an intermediate result a reordered instruction se-
quence IN.

UNP starts by building a predicate hierarchy graph,
PHG. Note that this is not the same PHG from the previ-
ous section, which contained a mix of superword and scalar
predicates. The superword predicates have been eliminated
and replaced withselectoperations. Only scalar predicates
remain in the new predicate hierarchy graph. UNP also con-
structs a data dependence graph for instruction sequence
IN, capturing the ordering constraints on the instruction se-
quence.

Subsequently, UNP initializes the CFG with a root node
associated with a null predicate P0. The main loop iterates
through the input instruction sequence IN. First, we find
a set of existing basic blocks where it is safe to insert the

5

bred[i] = fred; (p)
bred[i] = 100; (¬p)
bgreen[i] = fgreen; (p)
bgreen[i] = 100; (¬p)
bblue[i] = fblue; (p)
bblue[i] = 100; (¬p)

(a) Predicated scalar code

if(p == 1) bred[i] = fred;
if(p == 0) bred[i] = 100;
if(p == 1) bgreen[i] = fgreen;
if(p == 0) bgreen[i] = 100;
if(p == 1) bblue[i] = fblue;
if(p == 0) bblue[i] = 100;

(b) Naive unpredicate applied

if (p){
bred[i] = fred;
bgreen[i] = fgreen;
bblue[i] = fblue;

}else{
bred[i] = 100;
bgreen[i] = 100;
bblue[i] = 100;

}

(c) Improved

Figure 6. Restoring control flow

given instruction. An instructionI guarded by predicateP
can be inserted in basic blockB associated with predicate
P ′ if P = P ′ and there is no data dependence preventing
insertion ofI into B. If the set is not empty, the instruction
I is inserted at the end of the earliest such basic blockB.
Also, in the input instruction sequenceIN , I is moved next
to instructionI ′ that is the immediate prior instruction inB.
Although we have already processedI, moving it in the in-
struction sequence will facilitate finding predicate covering
basic blocks in Algorithm PCB for subsequent instructions
in the stream. If the instruction cannot be inserted into any
existing basic block, we create a new basic blockB′ andI
is placed intoB′.

When a new basic blockB′ is created by Algorithm
NBB, the predicate covering basic block algorithm (PCB) is
used to find a set of predecessors ofB′. Whereas Mahlke’s
predicate CFG generatorscans forward to find a set of suc-
cessors, we scan the input instruction sequence backward
to find predecessor instructions whose predicates cover the
predicate of the given instruction. Since the instructions in
the input instruction sequence are processed sequentially,
all predecessor instructions chosen must have been inserted
already. By keeping a pointer from the inserted instruc-
tions to the basic blocks, the predecessor basic blocks for
the new basic block are identified. We create a copyPHG′

of predicate hierarchy graphPHG so that we may mark cov-
ering predicates during the search for the appropriate basic
blocks to connect to the new basic block in the interme-
diate CFG. The functiondoes cover(P’, P, PHG’)
checks ifP ′ coversP in PHG′. If P ′ is not marked yet
in PHG′ andP ′ is not mutually exclusive with P, the func-
tion returnstrue. The functionmark(PHG’, P’) places
a mark on a predicate nodeP ′ in PHG′ as covered and
checks if the predecessor nodes and the successor nodes of
P ′ are also covered as a result of marking. If a node is newly
marked, this process is recursively applied to the neighbors
of the node. The functionis covered(PHG’, P) ex-
aminesPHG′ and returnstrue if P is marked as covered.

4 Parallelization and Code Generation

In this section, we discuss additional implementation ex-
tensions to SLP beyond the two algorithms in Section 3 re-
quired to obtain the results in the next section.

Type conversions. A common feature of multimedia ap-
plications is type size conversion, particularly to promote
small data types before or after arithmetic operations. In the
original SLP compiler, if an operation is to be performed
on two superwords whose element’s type sizes are differ-
ent, the elements of the superword with the smaller type
size is unpacked into a set of scalar variables, the type con-
version is applied to the scalar variables, and the converted
elements are packed into a set of superwords. Type size
conversion is more difficult on superwords than scalar data
types, due to alignment issues, instruction set limitations
and the impact on parallelization. We have extended SLP
such that to the extent possible type conversions are per-
formed in parallel. On the AltiVec, the available instruc-
tions supporting type conversion convert to fields that are
half or double the size. Type size conversions of a factor
larger than two must be broken into multiple conversions.
The alignment offset of the destination variable is adjusted
from that of the source variables. Predicate variables also
may require type conversions so that they match the size
of the destination variable of the instruction being guarded.
In our benchmarks in the next section,MPEG2-dist1 and
EPIC-unquantize have type size conversions.

Reductions. A reductionoperation consists of obtaining
a single element by combining the elements of a vector or
array, that is, it reduces the vector or array to one element.
It appears as a scalar data dependence to the original SLP
compiler, and is not parallelized. Of the eight benchmarks
used in the experiments presented in section 5,TM, MAX,
MPEG2-dist1 andGSM-Calculation have reduction
operations. Our implementation extends SLP to support re-
ductions similar to the standard code generation for reduc-
tions in multiprocessors. We create as many private copies
of the reduction variable as will fit in a superword. Instead

6

Algorithm UNP : Given a sequence of predicated instructions IN, introduce
control flow into the instruction sequence after removing predicates.

PHG← Build a predicate hierarchy graph
DG← Build a data dependence graph
CFG← new basic block(P0) // root node
for each instruction I∈ IN in textual order

B← {basic block b| ∀ basic blockb′ ∈ CFG
(b′ is reachable fromb in CFG)⇒
(6 ∃ an instructionI′ ∈ b′ such thatI is dependent onI′)}

if (B == ∅)
B← NBB(CFG, PHG, I, IN)

else
Move I in IN to next to the last instruction of the

earliest basic block in B
Insert I to end of the earliest basic block b∈ B

return CFG

(a) UNPredicate main

Algorithm NBB : Given an instructions I, predicate hierarchy graph PHG,
the current control flow graph CFG, and predicated input code IN, generate
a new basic block in CFG.

P← predicate of I
b← new basic block(P)
B← PCB(P, PHG, CFG, IN, I)
for each b′ ∈ B

generate an edge fromb′ to b
return b

(b) Create a new basic block

Algorithm PCB : Given a predicate P, predicate hierarchy graph PHG, the
current control flow graph CFG, predicated input code IN, and an instruc-
tion I, return a set of basic blocks that are predecessors of I.

RET← ∅
PHG’← PHG
I’ ← I.previous
while I’ 6= NULL

P’← I’.predicate
if (does cover (P’, P, PHG’) == TRUE)

RET← RET∪ I’.block
PHG’←mark (PHG’, P’)

if (is covered (PHG’, P) == TRUE)
return RET

I’ ← I’.previous

RET← RET∪ {ROOT}
return RET

(c) Predicate covering basic blocks

Figure 7. Unpredicate Algorithm

of assigning each private copy to a coarse grain computa-
tion, different private copies are assigned to each consec-
utive iteration in a round robin fashion so that the private
copies are packed into one superword and reduction opera-
tions are done in parallel when the loop is unrolled. Outside
the parallel loop, the private copies are unpacked and com-
bined into the original reduction variable sequentially.

Unaligned Memory References. The SLP algorithm
packs instructions starting from memory references. Two
memory references are packed if they are adjacent to each
other and they access a constant offset with respect to super-
word size. Thus, when the start address of a memory refer-
ence is unknown or the address is not constant with respect
to superword size, it cannot be packed. We loosen these re-
quirements so that two memory references can be packed
as long as they are adjacent. As a result, the address of a
superword memory reference can be one ofaligned to zero
offset, aligned to non-zero offsetor unaligned. Depending
on the kind of alignment, our implementation generates a
simple aligned load, a static alignment with two loads, or a
dynamic alignment for an unknown alignment. To optimize
the cost of packing, we use a technique we have developed
calledprepackingto group desired instructions together, the
details of which are beyond the scope of this paper.

5 Experimental Results

This section presents performance data obtained by ap-
plying the algorithm presented in Section 3 to eight com-
putational kernels. This section describes the compiler im-
plementation, experimental environment, the kernels used
in the experiments and an evaluation of the results.

5.1 Benchmarks and Implementation

Table 1 describes the eight benchmarks used in
the experiments, often found in multimedia and ap-
plications. Three of the codes,MPEG2-dist1 ,
EPIC-unquantize and GSM-Calculation are in-
dividual functions from three codes in the UCLA Me-
diaBench. MPEG2-dist1 , EPIC-unquantize and
GSM-Calculation take 55 %, 25 % and 49 % of the run
time in MPEG2encoder,EPIC decoder andGSMencoder,
respectively. Since this paper focuses on parallelizing loops
in the presence of control flow, each benchmark contains at
least one conditional.

5.2 Methodology

The Stanford SUIF compiler is the underlying infrastruc-
ture [11] for our implementation. We have implemented the

7

Name Description Data Width Input Size

Chroma Chroma keying of two images 8-bit character Large: 400× 431 color image(1 MB)
Small: 48× 48 color image(12 KB)

Sobel Sobel edge detection 16-bit integer Large: 1024× 768 gray scale image(3 MB)
Small: 1024× 4 gray scale image(16 KB)

TM Template matching 32-bit integer Large: 64× 64 image, 72 32× 32 templates(1.4 MB)
Small: 16× 64 image, 1 16× 32 templates(10 KB)

Max Max value search 32-bit float Large: 2 100× 256× 256(52 MB)
Small: 2 8× 256 (16 KB)

transitive Shortest path search 32-bit integer Large: 2 1024× 1024 (8 MB)
Small: 2 16× 16 (2 KB)

MPEG2-dist1 MPEG2 encoder 8-bit character Large: data blocks for the first 1000 calls (11 MB)
(dist1 function) 32-bit integer Small: data blocks for the first 2 calls(22 KB)

EPIC-unquantize EPIC(Efficient Pyramid Image Coder) 16-bit integer Large: reference input (393 KB)
(unquantizeimage of unepic) 32-bit integer Small: first 4 calls (6 KB)

GSM-Calculation GSM(Global System for Mobile Communication) 16-bit integer Large: reference input (1.1 MB)
(Calculationof the LTP parameters of gsmencode) 32-bit integer Small: first 50 calls (16 KB)

Table 1. Benchmark programs

components inside the dotted line of Figure 1 and integrated
them in SUIF. The output from the SUIF portion of the sys-
tem is an optimized C program, augmented with special su-
perword data types and operations. The resulting code is
compiled by a GCC (version 2.95) backend which has been
modified to support superword data types and operations
for the PowerPC Altivec. The resulting optimized kernels
are executed on a 533 MHz Macintosh PowerPC G4, which
has a superword register file with 32 128-bit registers, a 32
KByte L1 cache and an 1 MByte L2 cache.

Figure 8 illustrates the experimental flow. The
Baseline version of each kernel is its corresponding ini-
tial sequential code. TheSLP version is derived using
MIT’s SLP compiler. VersionSLP-CF represents the fi-
nal optimized code generated using SLP plus the new op-
timization passes corresponding to our algorithm. All pro-
grams were compiled by the extended GCC backend with
optimization flag-O3 .

5.3 Performance Measurements

Figures 9(a) and 9(b) show speedups of the eight kernels
with respect to their baseline versions for two different data
set sizes. In Figure 9(a), we use the standard data input
size for each kernel, whose footprint is much larger than
the L1 cache size. A smaller data set size that fits in L1
cache is used for the results in Figure 9(b), to help isolate
the potential gains fromSLP-CF (or SLP) from the effects
of the memory behavior of the kernels. For reference, we
also show the results ofSLP for both data set sizes.

For the large data set sizes of Figure 9(a), the speedups
achieved bySLP-CF range from 1.10X to 2.62X, with an
average of 1.65X. All kernels show significantly increased
speedups for the smaller data input sizes, ranging from
1.97X to 15.07X, with an average of 5.19X. These results
suggest that applying locality optimizations andSLP-CF

together may result in much better performance for large
data sets.

The SLP-CF versions of Chroma, Sobel , and
EPIC-unquantize all effectively exploit the parallelism
available in these kernels, yielding speedups of more than
6.21X. In particular, the 15.07 speedup onChroma is
because the data type size of the operands is 8 bits,
which results in 16 operations on 8-bit objects per super-
word operation.TM, Max, transitive , MPEG2-dist1
and GSM-Calculation show more modest speedups.
MPEG2-dist1 , TMandGSM-Calculation have a re-
duction. InMPEG2-dist1 , initialization and finalization
remain inside a loop body since the reduction variable is
used as the test for loop exit.Sobel andTMalso have per-
formance loss due to unaligned memory accesses. We also
observe that for the provided input data set size,TMhas a
very low number of true values for the branch parallelized
by SLP-CF. While in sequential execution the code would
branch around the core computation, inSLP-CF it must
perform the computation on every iteration and merge with
prior results using aselectoperation. This additional com-
putation over sequential execution reduces the benefit of the
parallelization. The computation inGSM-Calculation
is not fully parallelized due to a scalar dependence, but a
set of statements between the control flow constructs, rep-
resenting a loop that was manually unrolled, is parallelized
by bothSLPandSLP-CF. Even though the code within the
control flow construct is not parallelized, the use of predi-
cation allowed our compiler to exploit parallelism across
what would have been multiple basic blocks, resulting in a
bit higher speedup forSLP-CF.

Other thanGSM, we see that the originalSLP results
do not speed up at all over sequential execution, and for
Max show a significant degradation. The main reason for
this is that SLP is unable to exploitany parallelism in the

8

original
C code

control flow
extension

Baseline SLP SLP-CF

GCC
2.95.2

PowerPC
G4

SLP
compiler

Figure 8. Experimental flow

presence of control flow. In addition, there is some over-
head introduced by the SUIF compiler passes leading up
to SLP, particularly its code transformations related to dis-
mantling program constructs. This overhead is not inherent
to the SLP approach, and we believe it could be eliminated
with tuning of the SUIF passes. Nevertheless, since it is
not identifying parallelism, the best results we could hope
for from the originalSLP compiler is no change from the
sequential performance. The analyses and transformations
in SLP-CF are crucial to exploiting superword-level paral-
lelism in these codes.

Discussion. TheSLP-CF approach presented in this pa-
per has demonstrated fairly significant speedups on eight
multimedia kernels for which the originalSLP compiler
was unable to exploit much parallelism. In the process of
this work, we learned a number of things. The performance
gain for superword-level parallelization in the presence of
control flow depends on a number of factors, related to
both the underlying architecture and the input data set. As
was discussed in [24], different instruction set features sup-
porting conditionals impact performance. In the AltiVec,
the general mechanism ofselectoperations requires exe-
cuting instructions along all control flow paths and merg-
ing the results. When compared to sequential execution,
where branches around code constructs may reduce the op-
eration count, it is a tradeoff between parallelism and code
with fewer branches versus less overall computation. In ex-
amples such asTMwhere the number of branches taken is
large, this can limit performance improvement. Also, the
AltiVec ISA does not support a full set of general operations
for all possible types. As examples, 32-bit integer multi-
plication, unpacking unsigned integers and division are not
directly supported in the ISA, requiring additional instruc-
tions. For 16-bit multiplies,vec mule and vec mulo
multiply even or odd numbered elements respectively in su-
perword registers, producing two superwords to promote
the results to 32 bits. These even and odd multiplications
shuffle the data elements breaking the spatial adjacency of
data elements, requiring additional instructions to reorga-
nize the results. Bitwise selection causes another problem in
conjunction with the inconsistency of scalar boolean value
and superword boolean values. Sometimes, the SLP com-
piler may pack scalar boolean variables into a superword.
Since the result of a scalar comparison is either 0 or 1 in-

stead of a vector of all 0s or all 1s, the superword select
can be incorrect if scalar boolean variables are packed into
a superword and used in selects. Further, locality effects
can dwarf the performance benefits of parallelization for
memory-bound computations. Since locality optimizations
are usually applicable for multimedia codes, optimizations
such as prefetching and tiling should be used in conjunction
with the parallelization.

6 Related Work

There are several prior works on automatic paralleliza-
tion for multimedia extensions [16, 15, 25, 5, 19, 4]. Two
distinct approaches are used, that is, SLP and an adaptation
of vectorization technique. Extending vectorization tech-
niques for conditionals has been addressed [4, 25], but there
is no prior work describing how to parallelize conditionals
using an SLP-type approach.

If-conversion is described in [3, 2]. More recently, Park
and Schlansker describe an if-conversion algorithm that is
optimal in terms of the number of predicates used and the
number of predicate defining instructions [22]. We use this
algorithm in our compiler. Ferrante and Mace describe
restoring control flow back from if-converted code [10].
However, their main focus is in generating a sequential
code from parallel intermediate representations. Vectoriz-
ing compilers targeting multimedia extensions should have
a mechanism corresponding to ourunpredicateunless if-
conversion is applied selectively only to the statements that
will be parallelized. Mahlke describes apredicate CFG
generatorwhich restores the original control flow from a
predicated hyperblock code [20]. We use his algorithm in
theunpredicatealgorithm when an instruction cannot be in-
serted into the existing basic blocks.

The select instruction is described in many docu-
ments [9, 24, 21]. Bik and et. al. use a technique calledbit
maskingto combine definitions. However, their method is
limited to singly nested conditional statements [4]. Chuang
et. al. directly generatephi-instructionsfrom the CFG
of a scalar code to resolvemultiple-definition problemin
the architectures that support predicated execution [6]. A
phi-instruction is a scalar analog of the superwordselect
instruction described in Section 2. Their approach is re-
lated to ours in that Park and Schlansker’s algorithm is also
used to derive predicates for the phi-instructions. While

9

Chroma Sobel TM Max transitive MPEG2 EPIC GSM
Benchmarks

0.0

1.0

2.0

3.0

4.0

S
pe

ed
up

Baseline

SLP

SLP−CF

(a) large data set sizes

Chroma Sobel TM Max transitive MPEG2 EPIC GSM
Benchmarks

0.0

1.0

2.0

3.0

4.0

S
pe

ed
up

Baseline

SLP

SLP−CF

14.63 7.16.21

(b) small data set sizes

Figure 9. Speedups over Baseline

phi-predication could be run as a pre-pass to SLP, the code
resulting from SLP would potentially contain remaining
scalar predicated instructions. In an architecture such as the
AltiVec, efficient code generation of the predicated scalar
instructions would require an algorithm akin to the unpredi-
cate pass described here. Using phi-predication as opposed
to full predication to parallelize conditionals in the SLP
compiler is a topic of future research.

7 Conclusion

This paper has described key concepts in extending the
notion of superword-level parallelization in the presence of
control flow. Because SLP works on basic blocks, we per-
form if-conversion and derive large basic blocks with pred-
icated instructions to which SLP can be applied. As a result
of SLP, the instruction order is modified, and some scalar
instructions have been replaced by superword operations,
possibly guarded by superword predicates. In many multi-
media ISAs, including the PowerPC AltiVec, we must re-
place definitions guarded by superword predicates with a
series ofselect instructions to combine multiple defini-
tions along different paths. We discussed how to minimize
the number ofselect instructions that must be inserted.
Subsequently, we must restore control flow to the scalar in-
structions that were predicated by if-conversion and not par-
allelized by SLP. We described anunpredicatealgorithm
that attempts to restore original control flow whenever pos-
sible, to avoid introducing additional branch overhead. We
have implemented these algorithms and modified the exist-
ing SLP compiler to recognize predicates. The speedups
obtained by applying our implementation to eight kernels

range from 1.97X to 15.07X.

8 Acknowledgements

The authors would like to thank Samuel Larsen, Mark
Stephenson and Saman Amarasinghe at MIT for providing
their SLP implementation. This material is based on re-
search sponsored by AFRL and NSA under agreement num-
ber FA8750-04-1-0265. The views and conclusions con-
tained herein are those of the authors and should not be
interpreted as necessarily representing the official policies
or endorsements, either expressed or implied, of AFRL and
NSA or the U.S. Government.

References

[1] A. Aho, R. Sethi, and J. Ullman.Compilers: Principles,
Techniques, and Tools. Addison-Wesley, 1986.

[2] J. Allen, K. Kennedy, C. Porterfield, and J. Warren. Conver-
sion of control dependence to data dependence. InAnnual
Symposium on Principles of Programming Languages, pages
177–189, 1983.

[3] R. Allen and K. Kennedy.Optimizing Compilers for Modern
Architectures. Morgan Kaufmann, 2002.

[4] A. Bik, M. Girkar, P. Grey, and X. Tian. Automatic intra-
register vectorization for the intel architecture.International
Journal of Parallel Programming, 30(2):65–98, April 2002.

[5] G. Cheong and M. Lam. An optimizer for multimedia in-
struction sets. InThe Second SUIF Compiler Workshop,
Stanford University, USA, August 1997.

[6] W. Chuang, B. Calder, and J. Ferrante. Phi-predication for
light-weight if-conversion. pages 179–190, San Francisco,
California, 2003.

10

[7] D. DeVries. A vectorizing suif compiler: Implementation
and performance. Master’s thesis, University of Toronto,
1997.

[8] J. Draper, J. Chame, M. Hall, C. Steel, T. Barrett, J. La-
Coss, J. Granacki, J. Shin, C. Chen, C. Kang, I. Kim, and
G. Daglikoca. The architecture of the DIVA processing-in-
memory chip. InProceedings of the 16th ACM International
Conference on Supercomputing, pages 26–37, June 2002.

[9] J. Draper, J. Sondeen, and C. Kang. Implementation of
a 256-bit wideword processor for the data-intensive archi-
tecture (diva) processing-in-memory (pim) chip. In28th
European Solid-State Circuits Conference, Florence, Italy,
September 2002.

[10] J. Ferrante and M. Mace. On linearizing parallel code. InAn-
nual Symposium on Principles of Programming Languages,
pages 179–190, 1985.

[11] M. Hall, J. Anderson, S. Amarasinghe, B. Murphy, S. Liao,
E. Bugnion, and M. Lam. Maximizing multiprocessor per-
formance with the SUIF compiler.Computer, 29(12):84–89,
1996.

[12] M. Hall, P. Kogge, J. Koller, P. Diniz, J. Chame, J. Draper,
J. LaCoss, J. Granacki, A. Srivastava, W. Athas, J. Brock-
man, V. Freeh, J. Park, and J. Shin. Mapping irregular appli-
cations to DIVA, a PIM-based data-intensive architecture. In
ACM International Conference on Supercomputing, Novem-
ber 1999.

[13] Intel. Intel(R) Itanium Architecture Software Developer’s
Manual, October 2002. 24531904.pdf.

[14] Intel. Intel(R) Itanium(R)2 Processor Reference Manual,
April 2003. 25111002.pdf.

[15] A. Krall and S. Lelait. Compilation techniques for multime-
dia processors.International Journal of Parallel Program-
ming, 28(4):347–361, 2000.

[16] S. Larsen and S. Amarasinghe. Exploiting superword level
parallelism with multimedia instruction sets. InConfer-
ence on Programming Language Design and Implementa-
tion, pages 145–156, June 2000.

[17] S. Larsen, E. Witchel, and S. Amarasinghe. Increasing
and detecting memory address congruence. InInternational
Conference on Parallel Architectures and Compilation Tech-
niques, September 2002.

[18] C. Lee, M. Potkonjak1, and W. Mangione-Smith. Media-
bench: A tool for evaluating and synthesizing multimedia
and communications systems. InACM/IEEE international
symposium on Microarchitecture, pages 330–335, 1997.

[19] R. Lee. Subword parallelism with max2.ACM/IEEE in-
ternational symposium on Microarchitecture, 16(4):51–59,
August 1996.

[20] S. Mahlke. Exploiting Instruction-Level Parallelism in the
Presence of Conditional Branches. PhD thesis, University of
Illinois, Urbana IL, September 1996.

[21] Motorola. AltiVec Technology Programming Environments
Manual, Rev. 0.1, November 1998.

[22] J. Park and M. Schlansker. On predicated execution, May
1991. Software and Systems Laboratory, HPL-91-58.

[23] J. Shin, J. Chame, and M. Hall. Compiler-controlled caching
in superword register files for multimedia extension. InIn-
ternational Conference on Parallel Architectures and Com-
pilation Techniques, September 2002.

[24] J. Smith, G. Faanes, and R. Sugumar. Vector instruction set
support for conditional operations. InInternational Sympo-
sium on Computer Architecture, 2000.

[25] N. Sreraman and R. Govindarajan. A vectorizing compiler
for multimedia extensions.International Journal of Parallel
Programming, 2000.

11

